
Exam Geometry WIMTK-08

January 25, 2017

Note: This exam consists of four problems. Usage of Do Carmo's textbook is

allowed. Give a precise reference to the theory you use for solving the problems.

Problem 1 (3+5+5+5+7=25 pts.)

Let α : R → R3 be the curve given by

α(s) =
(
1√
2
cos s, 12(−s+ sin s), 12(s+ sin s)

)
The curvature and torsion at α(s) are denoted by k(s) and τ(s), respectively.

1. Show that the curve is parameterized by arc length.

2. Determine the Frenet frame {t(s),n(s),b(s)} of the curve at an arbitrary

point α(s).

3. Show that the curvature k and the torsion τ of the curve are constant by

computing their values.

4. Let v(s) be the vector given by v(s) = −τ t(s) + kb(s). Prove that v is a

constant vector.

5. Denote the constant value of v(s) by v0. Show that the curve α lies on

a circular cylinder the axis of which is the line through the origin with

direction vector v0. (Hint: prove that the distance of α(s) to this line is

constant.)

Problem 2 (8+12=20 pts.)

Let S be the surface in R3 with equation

z = 1
2ax

2 + 1
2by

2,

with a 6= b.

1. Determine the Gaussian curvature at a point (x, y, z) of S.

2. Let V be a plane through the z-axis. Prove that the curve S ∩ V is a line

of curvature of S i� V is the xz-plane or V is the yz-plane.
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Problem 3 (12+8 = 20 pts.)

Let S be the torus of revolution obtained by rotating the circle with equation

(x− a)2 + z2 = r2, y = 0,

about the z-axis. Here a and r are positive constants, with a > r > 0. The

parallels through the points (a+ r, 0, 0), (a− r, 0, 0) and (a, r, 0) are called the

maximum parallel, theminimum parallel, and the upper parallel, respectively.

1. Check which of these parallels is

(a) a geodesic;

(b) a line of curvature;

(c) an asymptotic curve.

2. Determine the geodesic curvature of the upper parallel of the torus.

Remark: this problem can be solved using geometric arguments. In other words,

you hardly need to do computations.

Problem 4 (8 + 7 + 10 = 25 pts.)

Let x : U→ R3 be a regular parametrization, where U is an open subset of R2.
As usual, the coe�cients of the �rst fundamental form of x are denoted by E, F

and G, respectively. The parametrization is such that

E(u, v) = 1 and F(u, v) = 0,

for all (u, v) ∈ U.

1. Prove that the curve α(s) = x(s, v0) is a geodesic, where s ranges over an

interval I such that (s, v0) ∈ U for s ∈ I. (In other words: prove that all

u-curves are geodesics.)

2. Let I be an interval and v : I→ R be a C2-function such that (u0, v(s)) ∈ U
for s ∈ I. Prove that the curve β(s) = x(u0, v(s)) has constant non-zero

speed if and only if

v ′ is nowhere zero and 2Gv ′′ +Gv(v
′)2 = 0, for s ∈ I.

Here G and Gv are evaluated at (u0, v(s)), whereas v
′ and v ′′ are evaluated

at s.

3. Prove that a regular curve β with constant speed as in part 2 is a geodesic,

for all u0 for which it is de�ned, if and only if G(u, v) does not depend on u.

(In other words, prove that all v-curves are geodesics up to reparametriza-

tion if and only if G does not depend on u.)
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Solutions

Problem 1.

1. A straightforward computation shows

α ′(s) =


− 1√

2
sin s

1
2(−1+ cos s)

1
2(1+ cos s)

 ,
so |α ′(s) | = 1.

2. The �rst frame vector is t(s) = α ′(s), which has been computed in Part 1.

Since the curve has unit speed,

n(s) =
t ′(s)

| t ′(s) |
=


− cos s

− 1√
2
sin s

− 1√
2
sin s

 .
Finally,

b(s) = t(s)∧ n(s) =


1√
2
sin s

1
2(−1− cos s)

1
2(1− cos s)

 .

3. In view of the Frenet formulas on page 19 of Do Carmo's book we get

k = 〈t ′(s),n(s)〉 = 〈


− 1√

2
cos s

− 1
2 sin s

− 1
2 sin s

 ,


− cos s

− 1√
2
sin s

− 1√
2
sin s

〉 = 1√
2
.

Similarly,

τ = 〈b ′(s),n(s)〉 = −
1√
2
.

4. Using the Frenet formulas again we get

v ′(s) = −kτn(s) + kτn(s) = 0.

Therefore, v(s) is constant. The value of v(s) can also be determined explicitly,

as we do in the solution of Part 5.

5. We have to prove that the distance from α(s) to its projection β(s) onto the

line through the origin with direction vector v0 is constant. To this end we �rst

determine v0:

v0 =
1√
2
(t(s) + b(s)) = 1√

2

 0

−1

1

 .
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Since v0 is a unit vector, we see that

β(s) = 〈α(s),v0〉v0 =


0

− 1
2s

1
2s

 .
Therefore,

β(s) − α(s) =


1√
2
cos s

1
2 sin s

1
2 sin s

 ,
so |β(s) − α(s) | = 1√

2
, for all s. This concludes the proof of the statement.

Problem 2.

1. The surface S is the graph of the function h : R2 → R given by

h(x, y) = 1
2ax

2 + 1
2by

2.

Proceeding as in Example 5 on pages 162{163 (for graphs of functions) we �nd

that the Gaussian curvature at the point (x, y, h(x, y)) of S is given by

K =
hxxhyy − h

2
xy

(1+ h2x + h
2
y)
2
=

ab

(1+ a2x2 + b2y2)2
.

2. Let the plane V be given by the equation cx + dy = 0, with (c, d) 6= (0, 0).

Using the parametrization x(u, v) = (u, v, h(u, v)) of S as in Example 5, we see

that S ∩ V is given by α(t) = x(u(t), v(t)), with

u(t) = dt, v(t) = −ct.

This curve is a line of curvature i� it satis�es equation (8) on page 161. To

verify when α satis�es this equation, we have to compute the coe�cients E,

F and G of the �rst fundamental form, and the coe�cients e, f and g of the

second fundamental form of S in the parameterization x. A straightforward

computation gives

E = 1+ a2u2, F = abuv, G = 1+ b2v2.

Using the expressions derived in Example 5 we get

e =
a√

1+ a2u2 + b2v2
, f = 0, g =

b√
1+ a2u2 + b2v2

.
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Therefore, α is a line of curvature i�

0 =

∣∣∣∣∣∣∣∣
(v ′)2 −u ′v ′ (u ′)2

E F G

e f g

∣∣∣∣∣∣∣∣
=

1√
1+ a2u2 + b2v2

∣∣∣∣∣∣∣∣
c2 cd d2

1+ a2d2t2 −abcdt2 1+ b2c2t2

a 0 b

∣∣∣∣∣∣∣∣
=

(a− b)cd√
1+ (a2c2 + b2d2)t2

.

Since a 6= b, the curve α is a line of curvature i� c = 0 or d = 0. If c = 0, then

V is the xz-plane. If d = 0, then V is the yz-plane.

Problem 3.

1. (a) Unit speed parametrizations of these parallels give an acceleration vector

in the plane of the parallel. The curve is a geodesic i� this acceleration vector is

perpendicular to the surface, which is the case for the inner and outer parallels,

but not for the upper parallel.

(b) All parallels are lines of curvature (Book, Example 4 on page 161).

(c) A unit-speed curve is asymptotic i� its acceleration vector (which is t ′)

is everywhere tangent to the surface (equivalently, i� its normal curvature is

zero along the curve, so 〈t ′, N〉 = 0). Therefore, only the upper parallel is an

asymptotic curve of the torus.

2. The geodesic curvature is the size of the tangential component of the accel-

eration vector (by de�nition). So the geodesic curvature of the upper parallel

is equal to 1
a .

Problem 4.

1. Since α ′ = xu and α ′′ = xuu (with α ′ shorthand notation for α ′(s), and xu
shorthand notation for xu(s, v0), and so on), we see that

〈α ′′,xu〉 = 〈xuu,xu〉 = 1
2Eu = 0,

〈α ′′,xv〉 = 〈xuu,xv〉 = Fu − 1
2Ev = 0.

In other words, α ′′(s) ⊥ Tα(s)S, so α is a geodesic of S.

2. Since β ′ = v ′xv, we see that |β ′ |2 = (v ′)2G. Therefore, |β ′ | is a positive

constant i�

v ′ 6= 0 and 0 = ((v ′)2G) ′ = 2v ′v ′′G+ (v ′)3Gv,

which is equivalent to

v ′ 6= 0 and 2v ′′G+ (v ′)2Gv = 0.
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3. The curve β has constant non-zero speed, so 〈β ′, β ′′〉 = 0. Since β ′ = v ′xv
with v ′ 6= 0, we see that 〈β ′′,xv〉 = 0. Therefore, β is a geodesic i� 〈β ′′,xu〉 = 0.
A short computation shows that

〈β ′′,xu〉 = 〈v ′′xv + (v ′)2xvv,xu〉 = (v ′)2(Fv −
1
2Gu) = −1

2Gu(v
′)2. (1)

Now assume β is a geodesic for every u0. We have to show that Gu is identically

zero. To see this, let (u0, v0) be an arbitrary point in U, and consider the

geodesic β(s) = x(u0, v(s)), with v(0) = v0. Since 〈β ′′(0),xv(u0, v0)〉 = 0,

identity (1) implies Gu(u0, v0) = 0.

Conversely, assume that Gu is identically zero. A similar argument shows

that β ′′ is perpendicular to xu along the curve β. According to (1), the accel-

eration vector β ′′ is also perpendicular to xu, so β is a geodesic.
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